If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2+42k+28=0
a = 4; b = 42; c = +28;
Δ = b2-4ac
Δ = 422-4·4·28
Δ = 1316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1316}=\sqrt{4*329}=\sqrt{4}*\sqrt{329}=2\sqrt{329}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{329}}{2*4}=\frac{-42-2\sqrt{329}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{329}}{2*4}=\frac{-42+2\sqrt{329}}{8} $
| -(5x+10)=10 | | 4+(n/3)=-2 | | 5x^2-45+16=0 | | 3+w=5+18 | | -7x-19=3x+1 | | -(4x+7)/6+(3-4x)/3=(3x-1)/2 | | 2+12x=9x+32 | | 2x-10=x=15 | | 5x-2x+27=90 | | z/17=26 | | 13x=-360 | | x=9/3×+13+× | | 27+7x=180 | | 0.5(x+8)=6.50 | | x/0.75=0.33 | | X+2+2x+30=180 | | 8x+9+9x+1=180 | | 0.4/x=0.5 | | 75000=50000(1.03)^x | | 5(y-6)-4=-14 | | x+5x+3x=126 | | 3x+29=7x+5 | | 6x+20=11x-10 | | 0.5x+43=350 | | -8x+25=142 | | x+12+3=3(x−1)−11 | | 4r+17=49 | | 6n=4=22 | | 3j–6=4j+7 | | 3.2x=6x | | +x+16=17 | | (n+4)/8=n/4 |